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A general geometric framework is devised in order to contain the presymplectic 
and Lagrangian formalisms as particular cases. We call these objects constrained 
dynamical systems, since their dynamics usually lead to constraints. Their most 
elementary properties are studied, and several related structures, especially 
morphisms, are defined. In particular, a stabilization algorithm is performed. As 
a byproduct, the dynamics and constraints of the Lagrangian formalism (with 
the "second-order condition") are intrinsically obtained. 

1. INTRODUCTION 

The presymptectic formalism is devised to geometrize the Hamiltonian 
formalism for constrained systems. For a presymplectic manifold (M, w) 
the closed 2-form w defines a morphism of vector M-bundles o3: T(M)--> 
T(M)*. A "locally Hamiltonian constrained system" is then defined by a 
closed 1-form/3 ~ I~I(M), and the equation of  motion for a path ~ in M is 

Since this equation is not written in normal form, a procedure to determine 
the subset of points in M by which solutions pass, and also the multiplicity 
of the solutions, is needed. This is achieved through a stabilization algorithm 
which is a geometrization of  the Dirac-Bergmann constraint algorithm 
(Gotay et  al.,  1978). 

The presymplectic formalism has also been applied to the Lagrangian 
formalism, by adding the second-order condition to the Lagrangian presym- 
plectic equation ~ L  o ~= = d E L  o ~. Both equations can be equivalently written 
into a single one: there is a vector field K along the Legendre transformation 
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FL [or, what is the same, a section of the inverse image of T(T(Q)*)  under  
FL] such that the Euler-Lagrange equation for a path ~: in T(Q) can be 
written (Gr~cia and Pons, 1989) 

T(FL) o ~ = K o 

When L is singular (i.e., FL is not a local diffeomorphism) a stabilization 
algorithm must be performed as in the presymplectic formalism. 

The dynamics above considered have a common feature: their equations 
of  motion are not written in normal form, since ~ is multiplied by a linear 
operator  depending on x. A geometric f ramework for such equations can 
be built as follows. 

2. CONSTRAINED DYNAMICAL SYSTEMS 

We consider a finite-dimensional paracompact  manifold M, a vector 
bundle ~r: F-->M, a morphism of vector M-bundles  A: T (M)->  F, and a 
section or: M-> F of  F. For a path ~: I ~  M we consider the differential 
equation 

Ao~=o 'o~  (1) 

In other words, the following diagram has to be commutative: 

A 
T ( M )  ~ F 

/lo s 
I ~ M  

We shall call the quintuple (M, F, ~, A, or) a constrained dynamical 
system, and (1) the equation of  motion for a path in M. 

I f  the local expression of A is (x, v) ~-~ (x, A (x ) . v )  and the local 
expression of  or is x ~ (x, ~r(x)), then the local expression of  (1) is 

A(x(t))"  ~(t)  = tr(x( t ) )  

In general, (1) may not have solutions passing through every point in 
M, and if there is a solution passing through x, it may not be unique. We 
call motion set the subset S of  points x ~ M such that there is a solution 
of  the equation of  motion passing by x. The ideal C of  functions in M 
which vanish on the mot ion set S is called the constraint ideal, and its 
elements the constraint functions. 

An alternative description of the dynamics can be given in terms of 
the equation of  motion for a vector field : if  N c M is a submanifold contained 
in the motion set, and X is a vector field in M tangent to N, then the 



Constrained Systems: A Unified Geometric Approach 513 

integral curves of X contained in N are solutions of the equation of motion 
(1) if and only if X satisfies 

AoX ~- o" (2) 
N 

(where the notation ~-N means equality at the points of N). 

3. MORPHISMS OF CONSTRAINED DYNAMICAL SYSTEMS 

A morphism of constrained dynamical systems between (M, F, It, A, o') 
and (M', F', ~r', A', o-') is just a morphism (a , f )  between the vector bundles 
F and F' over M and M' such that 

f oA= A'oT(o~) (3) 

f o o ' =  o"oa (4) 

In other words, the following diagram has to be commutative: 

T ( M ' ) - - - ~  F' 
T(o/ �9 

T(M 1 f 

With this definition of morphisms the constrained dynamical systems clearly 
constitute a category. 

Many constructions with constrained dynamical systems can be carried 
on, as the inverse image through a mapping, the pass to the quotient 
in F, etc., and induce the corresponding morphisms. We point out only 
the following: if j: Mo-~M is a submanifold, we obtain a subsystem 
(Mo, FIMo, ~'lMo, A[ Mo, O'[Mo) for which the natural inclusions yield a morph- 
ism into (M, F, or, A, tr). 

A morphism (a,f) relates solutions and constraints in the following 
way: 

I. If ~ is a path solution of the equation of motion in M, then ~:' = a o 
is a solution in M'. 

2. If q~' is a constraint in M', then & = a*(&') is a constraint in M. 

As a consequence, a(S)c  S' and a*(C')c C. 
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4. THE STABILIZATION PROBLEM 

I f  A is not an isomorphism, then the equation of motion (2) must be 
considered as an equation both for the submanifolds N c  M where the 
motion can take place and the vector fields X tangent to IV. 

In general, the motion set S is a union of submanifolds N c M, but 
sometimes S itself is a submanifold of  M. Under  some regularity conditions 
it can be determined as follows. 

Let us assume that Ker  A ~_ T ( M )  and Im A ___ F are vector subbundles. 
This amounts  to saying that A has locally constant rank. 

The equation Ax" X ( x ) =  o-(x) for the unknown vector X ( x )  can be 
solved only at the points x c M such that the compatibili ty condition 

o'(x) ~ Im Ax (5) 

holds. This is equivalent to saying that o.(x) is orthogonal to the kernel of  
the transposed morphism, 

(Ker tax, o-(x)) = 0 (6) 

Let M~ = {x ~ M lo.(x) ~ Im Ax}. It is a closed subset of M, since Im A c F 
is closed. I f  (sa)l . . . .  is a local f lame for Ker  'A, then M1 c M is locally 
described, using (6), by the vanishing of  the m primary constraint functions 

6 a := (s ~ o.) (7) 

As usual in the theory of  constrained systems, we shall assume that M~ is 
a submanifold,  called the primary constraint submanifold. Similar assump- 
tions will be made in what follows. 

The compatibili ty condition (5) has led to the consideration of  solutions 
X which satisfy (2) only on M~; therefore, we are interested only in the 
values of  X 1 =X[M , . Since X (or Xa) must be tangent to Ma, the initial 
problem becomes the same problem for the subsystem defined by M~ : 

a 1 
T(M,)  , F~ 

Ix  
M~ 

where F1 = F[M,, and rr~, A1, and o- 1 are the corresponding restrictions 
to M1. 

Now we repeat the procedure.  The compatibili ty condition for this 
system yields a subset Me, also assumed to be a submanifold.  In general, 
let us write Mo = M, A~ = AIT(M,) , and o-~ = triM,, considered as mappings 
into F~ = FIMI, and define recursively 

Mi+l := {x c Mi I o.i(x) c Im Aix} (8) 
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(all these submanifolds can be also described in terms of constraints, using 
frames for Ker 'Ai). This sequence ends on the final constraint submanifold 
M s. The result is 

al 
T(M:) >Im A: > F: 

and therefore the equation A:oXy =o-y for a vector field Xf in My has 
solutions; these are not unique when Ker Af ~ 0. 

This stabilization algorithm can be given a form more suitable for 
computations. One can also show that morphisms preserve each step of the 
stabilization algorithms and therefore the corresponding constraints. 

When our constrained system corresponds to the presymplectic formal- 
ism, then the algorithm we have presented is equivalent to that of Gotay 
et aL (1978). When the Lagrangian formalism is considered as in the 
introduction (Gr~cia and Pons, 1989), we obtain an intrinsic stabilization 
algorithm which yields the constraints and the dynamics. Earlier work on 
the topic either were coordinate dependent and relied on the Hamiltonian 
stabilization algorithm (Batlle et aL, 1986), relied on the presymplectic 
Lagrangian formalism (Mufioz and Romfin-Roy, 1989), or, moreover, 
included a gauge fixing (Gotay and Nester, 1980). As an example, the 
primary Lagrangian constraints are directly obtained from (7): they are 
Xu := K. &,, where ~b~ run over the constraints defined by FL(TQ) in T*Q. 

5. COMMENTS AND APPLICATIONS 

The theory of presymplectic manifolds is not general enough to include 
directly the Lagrangian formalism deduced from a singular Lagrangian--the 
"second-order differential equation" condition must be explicitly imposed. 
Therefore, we have introduced a natural extension of both presymplectic 
and Lagrangian formalisms, under the name of constrained dynamical sys- 
tem& and the subsequent concepts of morphisms and constraints; other 
constrained systems also covered by our formalism are quoted below. We 
have carefully related the equations of motion for paths and vector fields, 
a point which is sometimes missed in the literature. 

In order to solve the equation of motion, a "stabilization algorithm" 
is devised. It has the advantage of being recursive: each step yields a new 
subsystem where a similar equation of motion has to be solved. For pre- 
symplectic systems it is equivalent to that of Gotay et al. (1978), but now 
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its main interest is to yield an intrinsic stabilization algorithm for the 
Lagrangian formalism (including the "second-order condition"). 

The morphisms allow us to relate different constrained systems and 
their equations of motion, constraints, and stabilization algorithms. In 
particular, the equivalence between Lagrangian and Hamiltonian formal- 
isms through the Legendre transformation (Batlle et al., 1986) can be 
geometrically formulated. On the other hand, the Dirac Hamiltonian formal- 
ism (Dirac, 1964) can be regarded as a constrained dynamical system, which 
is easily shown to be isomorphic to the presymplectic Hamiltonian formalism 
(Gotay et al., 1978). 

As another application of our generalized framework, the equations 
of motion (and the constraints in the singular case) for higher-order 
Lagrangians have been studied (Gr~cia et al., 1989), as well as the different 
"ruth-order differential equation" conditions that can be considered on 
them (Gr/tcia et al., 1989). 

These results, together with other related questions, additional 
examples, and detailed proofs, will be given elsewhere (Gracia and Pons, 
1991). 

We hope that our formalism will be useful in a deeper study of 
constrained systems, especially the Lagrangian formalism and symmetries. 
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